
ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

1

COMPUTER PROGRAMMING USING C++

(PART 1) ISYS 101

Dr.Nahla AL_Zerkany

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

2

C++ is a middle-level programming language developed by Bjarne Stroustrup starting in 1979 at

Bell Labs. C++ runs on a variety of platforms, such as Windows, Mac OS, and the various

versions of UNIX. This lectures adopts a simple and practical approach to describe the concepts

of C++.

When we consider a C++ program, it can be defined as a collection of objects that communicate

via invoking each other's methods

C++ Program Structure:

Let us look at a simple code that would print the words Hello World.

Let us look at the various parts of the above program:

1. The C++ language defines several headers, which contain information that is either necessary

or useful to your program. For this program, the header is needed.

 2. The line using namespace std; tells the compiler to use the std namespace. Namespaces are a

relatively recent addition to C++.

3. The next line ‘// main() is where program execution begins.’ is a single-line comment

available in C++. Single-line comments begin with // and stop at the end of the line.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main()
 {
 cout << "Hello World"; // prints Hello World
 return 0;
 }

Introduction

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

3

 4. The line int main() is the main function where program execution begins.

5. The next line cout << "This is my first C++ program."; causes the message "This is my first

C++ program" to be displayed on the screen.

 6. The next line return 0; terminates main() function and causes it to return the value 0 to the

calling process.

In C++, the semicolon is a statement terminator. That is, each individual statement must be

ended with a semicolon. It indicates the end of one logical entity. For example, following are

three different statements:

x = y;

y = y+1;

add(x, y);

A block is a set of logically connected s

{

 cout << "Hello World"; // prints Hello World

 return 0;

 }

C++ does not recognize the end of the line as a terminator. For this reason, it does not matter

where you put a statement in a line. For example:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

4

x = y;

y = y+1;

add(x, y);

is the same as:

x = y; y = y+1; add(x, y);

C++ Identifiers

 A C++ identifier is a name used to identify a variable, function, class, module, or any other user-

defined item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by

zero or more letters, underscores, and digits (0 to 9). C++ does not allow punctuation characters

such as @, $, and % within identifiers. C++ is a case-sensitive programming language. Thus,

Manpower and manpower are two different identifiers in C++. Here are some examples of

acceptable identifiers:

C++ Keywords :

The following list shows the reserved words in C++. These reserved words may not be used as

constant or variable or any other identifier names.

mohd zara abc move_name a_123

 myname50 _temp j a23b9 retVal

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

5

Asm

bool

case

char

class

const

const_cast

continue

default

delete

do

double

while

else

explicit

extern

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

throw

private

try

public

typeid

reinterpret_cast

return

short

signed

sizeof

static

static_cast

this

true

typedef

typename

union

unsigned

using

virtual

void

volatile

wchar_t

dynamic_cast

auto

enum

operator

break

export

protected

catch

false

register

struct

switch

template

Whitespace in C++

A line containing only whitespace, possibly with a comment, is known as a blank line, and C++

compiler totally ignores it. Whitespace is the term used in C++ to describe blanks, tabs, newline

characters and comments. Whitespace separates one part of a statement from another and enables

the compiler to identify where one element in a statement, such as int, ends and the next element

begins. Statement 1:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

6

int age;

In the above statement there must be at least one whitespace character (usually a space) between

int and age for the compiler to be able to distinguish them. Statement 2:

fruit = apples + oranges; // Get the total fruit

In the above statement 2, no whitespace characters are necessary between fruit and =, or between

= and apples, although you are free to include some if you wish for readability purpose.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

7

Program comments are explanatory statements that you can include in the C++ code. These

comments help anyone reading the source code. All programming languages allow for some

form of comments. C++ supports single-line and multi-line comments. All characters available

inside any comment are ignored by C++ compiler. C++ comments start with /* and end with */.

For example:

/* This is a comment */

/* C++ comments can also

 * span multiple lines

*/

A comment can also start with //, extending to the end of the line. For example:

 #include <iostream>

using namespace std;

 main()

 {

 cout << "Hello World"; // prints Hello World

 return 0;

 }

 When the above code is compiled, it will ignore // prints Hello World and final executable will

produce the following result:

COMMENTS IN C++

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

8

Hello World

 Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and

*/ have no special meaning. Thus, you can "nest" one kind of comment within the other kind. For

example:

/* Comment out printing of Hello World:

 cout << "Hello World"; // prints Hello World

 */

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

9

While writing program in any language, you need to use various variables to store various

information. Variables are nothing but reserved memory locations to store values. This means

that when you create a variable you reserve some space in memory. You may like to store

information of various data types like character, wide character, integer, floating point, double

floating point, boolean etc. Based on the data type of a variable, the operating system allocates

memory and decides what can be stored in the reserved memory. Primitive Built-in Types C++

offers the programmer a rich assortment of built-in as well as user defined data types. Following

table lists down seven basic C++ data types:

Type Keyword

 Boolean

Character

Integer

Floating point

 Double floating point

 Valueless

Wide character

bool

char

int

float

double

void

wchar_

Several of the basic types can be modified using one or more of these type modifiers:

 signed unsigned short long

DATA TYPES

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

10

The following table shows the variable type, how much memory it takes to store the value in

memory, and what is maximum and minimum value which can be stored in such type of

variables

Type Typical Bit Width Typical Range

Char

unsigned char

signed char

int

unsigned int

signed int

short int

unsigned short int

signed short int

long int

signed long int

unsigned long int

float

double

long double

wchar_t

1byte

1byte

1byte

4bytes

4bytes

4bytes

2bytes

Range

Range

4bytes

4bytes

4bytes

4bytes

8bytes

2 or 4 bytes

-127 to 127 or 0

0 to 255

-127 to 127

-2147483648 to 2147483647

0 to 4294967295

-2147483648 to 2147483647

-32768 to 32767

0 to 65,535

-32768 to 32767

-2,147,483,647 to 2,147,483,647

same as long int

0 to 4,294,967,295

+/- 3.4e +/- 38 (~7 digits)

+/- 1.7e +/- 308 (~15 digits)

+/- 1.7e +/- 308 (~15 digits)

1 wide c haracter

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

11

The size of variables might be different from those shown in the above table, depending on the

compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your

computer.

 #include<iostream>

 using namespace std;

 int main()

 {

cout << "Size of char : " << sizeof(char) << endl;

cout << "Size of int : " << sizeof(int) << endl;

cout << "Size of short int : " << sizeof(short int) << endl;

cout << "Size of long int : " << sizeof(long int) << endl;

cout << "Size of float : " << sizeof(float) << endl;

cout << "Size of double : " << sizeof(double) << endl;

cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

 return 0;

 }

This example uses endl, which inserts a new-line character after every line and << operator is

being used to pass multiple values out to the screen. We are also using sizeof() function to get

size of various data types.

When the above code is compiled and executed, it produces the following result which can vary

from machine to machine:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

12

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 4

Size of float : 4

Size of double : 8

Size of wchar_t : 4

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple syntax to

define a new type using typedef:

typedef type newname;

For example, the following tells the compiler that feet is another name for int:

typedef int feet;

 Now, the following declaration is perfectly legal and creates an integer variable called distance:

feet distance;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

13

A variable provides us with named storage that our programs can manipulate. Each variable in

C++ has a specific type, which determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations that can be

applied to the variable. The name of a variable can be composed of letters, digits, and the

underscore character. It must begin with either a letter or an underscore. Upper and lowercase

letters are distinct because C++ is case-sensitive: There are following basic types of variable in

C++ :

Type Description

bool

char

int

Float

double

void

wchar_t

Stores either value true or false.

Typically a single octet (one byte). This is an teger type.

The most natural size of integer for the machine.

A single-precision floating point value.

A double-precision floating point value.

Represents the absence of type.

A wide character type.

 C++ also allows to define various other types of variables like Enumeration, Pointer, Array,

Reference, Data structures, and Classes. Following section will cover how to define, declare and

use various types of variables.

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for the variable. A

variable definition specifies a data type, and contains a list of one or more variables of that type

as follows:

VARIABLE TYPES

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

14

type variable_list;

 Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names separated

by commas. Some valid declarations are shown here:

 int i, j, k;

 char c, ch;

 f loat f, salary;

 double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler

to create variables named i, j and k of type int. Variables can be initialized (assigned an initial

value) in their declaration. The initializer consists of an equal sign followed by a constant

expression as follows:

 Some examples are:

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

 char x = 'x'; // the variable x has the value 'x'.

 For definition without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables is

undefined. Variable Declaration in C++ A variable declaration provides assurance to the

type variable_name = value;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

15

compiler that there is one variable existing with the given type and name so that compiler

proceed for further compilation without needing complete detail about the variable. A variable

declaration has its meaning at the time of compilation only, compiler needs actual variable

declaration at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in

one of the files which will be available at the time of linking of the program. You will use extern

keyword to declare a variable at any place. Though you can declare a variable multiple times in

your C++ program, but it can be defined only once in a file, a function or a block of code.

Example:

Try the following example where a variable has been declared at the top, but it has been defined

inside the main function:

 #include <iostream>

 using namespace std;

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main ()

 {

 // Variable definition:

 int a, b;

 int c;

 float f;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

16

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c << endl ;

 f = 70.0/3.0;

 cout << f << endl ;

 return 0;

 }

When the above code is compiled and executed, it produces the following result:

 30

23.3333

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

17

Constants refer to fixed values that the program may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided into Integer Numerals,

Floating-Point Numerals, Characters, Strings and Boolean Values. Again, constants are treated

just like regular variables except that their values cannot be modified after their definition.

Integer Literals

 An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or

radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal. An integer literal can also

have a suffix that is a combination of U and L, for unsigned and long, respectively.

The suffix can be uppercase or lowercase and can be in any order. Here are some examples of

integer literals:

212 // Legal

215u // Legal

0xFeeL // Legal

078 // Illegal: 8 is not an octal digit

032UU // Illegal: cannot repeat a suffix

Following are other examples of various types of Integer literals:

CONSTANTS/LITERALS

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

18

85 // decimal

0213 // octal

0x4b // hexadecimal

30 //int

30u // unsigned int

30l // long

30ul // unsigned long

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent

part. You can represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent, or

both and while representing using exponential form, you must include the integer part, the

fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

 3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

 210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

Boolean Literals There are two Boolean literals and they are part of standard C++ keywords:

 A value of true representing true. A value of false representing false.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

19

You should not consider the value of true equal to 1 and value of false equal to 0.

Character Literals

Character literals are enclosed in single quotes. If the literal begins with L (uppercase only), it is

a wide character literal (e.g., L'x') and should be stored in wchar_t type of variable. Otherwise, it

is a narrow character literal (e.g., 'x') and can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a universal

character (e.g., '\u02C0').

There are certain characters in C++ when they are preceded by a backslash they will have special

meaning and they are used to represent like newline (\n) or tab (\t). Here, you have a list of some

of such escape sequence codes:

Escape sequence Meaning

\\

\'

 \"

 \?

\a

 \b

\f

 \n

\r

\t

\v

\ooo

\xhh . . .

\ character

' character

" character

? character

Alert or bell

Backspace

Form feed

Newline

Carriage return

Horizontal tab

Vertical tab

Octal number of one to three digits

Hexadecimal number of one or more digits

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

20

Following is the example to show a few escape sequence characte

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello\tWorld\n\n";

 return 0;

}

 When the above code is compiled and executed, it produces the following result:

 Hello World

String Literals

String literals are enclosed in double quotes. A string contains characters that are similar to

character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using

whitespaces. Here are some examples of string literals. All the three forms are identical strings.

 "hello, dear"

 "hello, \

 dear"

 "hello, " "d" "ear"

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

21

Defining Constants

There are two simple ways in C++ to define constants:

 Using #define preprocessor.

 Using const keyword.

The #define Preprocessor Following is the form to use #define preprocessor to define a constant:

#define identifier value

 Following example explains it in detail:

#include <iostream>

 using namespace std;

 #define LENGTH 10

 #define WIDTH 5

#define NEWLINE '\n'

int main()

 {

int area;

area = LENGTH * WIDTH;

cout << area;

cout << NEWLINE;

return 0;

 }

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

22

When the above code is compiled and executed, it produces the following result:

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

 const type variable = value;

 Following example explains it in detail:

#include <iostream>

using namespace std;

int main()

 {

const int LENGTH = 10;

const int WIDTH = 5;

const char NEWLINE = '\n';

int area;

area = LENGTH * WIDTH;

cout << area;

cout << NEWLINE;

return 0;

 }

50

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

23

When the above code is compiled and executed, it produces the following result:

 50

Note that it is a good programming practice to define constants in CAPITALS.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

24

The C++ standard libraries provide an extensive set of input/output capabilities.C++ I/O occurs

in streams, which are sequences of bytes. If bytes flow from a device like a keyboard, a disk

drive, or a network connection etc. to main memory, this is called input operation and if bytes

flow from main memory to a device like a display screen, a printer, a disk drive, or a network

connection, etc., this is called output operation.

 I/O Library Header Files

There are following header files important to C++ programs:

Header File Function and Description

<iostream>

<iomanip>

<fstream>

This file defines the cin, cout, cerr and clog objects, which

correspond to the standard input stream, the standard output

stream, the un-buffered standard error stream and the buffered

standard error stream, respectively.

This file declares services useful for performing formatted I/O with

so-called parameterized stream manipulators, such as setw and

setprecision.

This file declares services for user-controlled file processing.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is used

in conjunction with the stream insertion operator, which is written as << which are two less than

signs as shown in the following example.

BASIC INPUT/OUTPUT

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

25

#include<iostream>

using namespace std;

int main()

 {

 char str[] = "Hello C++";

 cout << "Value of str is : " << str << endl;

 }

 When the above code is compiled and executed, it produces the following result:

 Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the

appropriate stream insertion operator to display the value. The << operator is overloaded to

output data items of built-in types integer, float, double, strings and pointer values. The insertion

operator << may be used more than once in a single statement as shown above and endl is used

to add a new-line at the end of the line.

The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be attached to

the standard input device, which usually is the keyboard. The cin is used in conjunction with the

stream extraction operator, which is written as >> which are two greater than signs as shown in

the following example.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

26

#include<iostream>

 using namespace std;

int main()

 {

 char name[50];

 cout << "Please enter your name: ";

 cin >> name;

 cout << "Your name is: " << name << endl;

 }

 When the above code is compiled and executed, it will prompt you to enter a name. You enter a

value and then hit enter to see the following result:

 Please enter your name: cplusplus

 Your name is: cplusplus

 The C++ compiler also determines the data type of the entered value and selects the appropriate

stream extraction operator to extract the value and store it in the given variables. The stream

extraction operator >> may be used more than once in a single statement. To request more than

one datum you can use the following:

cin >> name >> age;

This will be equivalent to the following two statements:

cin >> name;

cin >> age;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

27

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C++ is rich in built-in operators and provide the following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

There are following arithmetic operators supported by C++ language: Assume variable A holds

10 and variable B holds 20, then:

 Operator Description Example

 +

 -

 *

 /

 %

 ++

 --

Adds two operands

Subtracts second operand from the first

Multiplies both operands

Divides numerator by denumerator

Modulus Operator and remainder

of after an integer division

Increment operator, increases

integer value by one

Decrement operator, decreases

integer value by one

A + B will give 30

A - B will give -10

A * B will give 200

B / A will give 2

B % A will give 0

A++ will give 11

A-- will give 9

OPERATORS

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

28

 Try the following example to understand all the arithmetic operators available in C++.

#include <iostream>

using namespace std;

 main()

 {

 int a = 21;

int b = 10;

int c ;

c = a + b;

cout << "Line 1 - Value of c is :" << c << endl ;

 c = a - b;

cout << "Line 2 - Value of c is :" << c << endl ;

c = a * b;

cout << "Line 3 - Value of c is :" << c << endl ;

c = a / b;

cout << "Line 4 - Value of c is :" << c << endl ;

c = a % b; cout << "Line 5 - Value of c is :" << c << endl ;

c = a++; cout << "Line 6 - Value of c is :" << c << endl ;

c = a--;

cout << "Line 7 - Value of c is :" << c << endl ;

return 0;

 }

 When the above code is compiled and executed, it produces the following result:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

29

Relational Operators

There are following relational operators supported by C++ language Assume variable A holds 10

and variable B holds 20, then:

Operator Description Example

==

!=

>

<

>=

<=

Checks if the values of two operands are equal or not, if
yes then condition becomes true.

Checks if the values of two operands are equal or not,if
values are not equal then condition becomes true.

Checks if the value of left operand is greater than the
value of right operand, if yes then condition becomes
true.

Checks if the value of left operand is less than the value
of right operand, if yes then condition becomes true.

 Checks if the value of left operand is greater than or equal to
the value of right operand, if yes then condition becomes true

Checks if the value of left operand is less than or equal to the
value of right operand, if yes then the condition becomes true

(A == B) is not true.

(A != B) is true.

(A > B) is not true.

(A < B) is true.

(A >= B) is not true

(A <= B) is true.

Try the following example to understand all the relational operators available in C++.

Line 1 - Value of c is :31

Line 2 - Value of c is :11

Line 3 - Value of c is :210

Line 4 - Value of c is :2

Line 5 - Value of c is :1

Line 6 - Value of c is :21

Line 7 - Value of c is :22

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

30

#include<iostream>

 using namespace std;

 main()

 {

int a = 21;

int b = 10;

int c ;

if(a == b)

 {

 cout << "Line 1 - a is equal to b" << endl ;

 }

 else

 {

 cout << "Line 1 - a is not equal to b" << endl ;

 }

 if (a < b)

{

cout << "Line 2 - a is less than b" << endl ;

}

else

{

 cout << "Line 2 - a is not less than b" << endl ;

}

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

31

if (a > b)

 {

cout << "Line 3 - a is greater than b" << endl ;

 }

else

{

cout << "Line 3 - a is not greater than b" << endl ;

}

 /* Let's change the values of a and b */

 a = 5;

b = 20;

if (a <= b)

{

cout << "Line 4 - a is either less than \ or equal to b" << endl ;

}

 if (b >= a)

 {

cout << "Line 5 - b is either greater than \ or equal to b" << endl ;

 }

return 0;

 }

When the above code is compiled and executed, it produces the following result:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

32

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

There are following logical operators supported by C++ language. Assume variable A holds 1

and variable B holds 0, then:

 Operator Description Example

&&

||

 !

Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

Called Logical OR Operator. If any of the

two operands is nonzero, then

condition becomes true.

Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition

is true, then Logical NOT operator will make false.

(A && B) is false.

(A || B) is true.

!(A && B) is true.

 Try the following example to understand all the logical operators available in C++.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

33

#include<iostream>

using namespace std;

main()

 {

int a = 5;

int b = 20;

int c ;

if (a && b)

 {

cout << "Line 1 - Condition is true"<< endl ;

}

if (a || b)

 {

 cout << "Line 2 - Condition is true"<< endl ;

}

/* Let's change the values of a and b */

a = 0;

b = 10;

if (a && b)

 {

 cout << "Line 3 - Condition is true"<< endl ;

}

else

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

34

{

cout << "Line 4 - Condition is not true"<< endl ;

}

 if (!(a && b))

 {

cout << "Line 5 - Condition is true"<< endl ;

 }

return 0;

 }

When the above code is compiled and executed, it produces the following result:

 Line 1 - Condition is true

Line 2 - Condition is true

Line 4 - Condition is not true

Line 5 - Condition is true

Assignment Operators

There are following assignment operators supported by C++ language:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

35

 Operator Description Example

 =

+=

-=

 *=

A /=

A %=

Simple assignment operator, Assigns values

from right side operands to left side operand.

Add AND assignment operator, It adds right

operand to the left operand and assign the

result to left operand.

Subtract AND assignment operator , It

subtracts right operand from the left operand

and assign the result to left operand.

Multiply AND assignment operator, It

multiplies right operand with the left operand

and assign the result to left operand.

Divide AND assignment operator, It divides left

operand with the right operand and assign the

result to left operand.

Modulus AND assignment operator, It takes

modulus using two operands and assign the

result to left operand.

C = A + B will assign value of A + B

into C

C += A is equivalent to C = C +

C -= A is equivalent to C = C – A

C *= A is equivalent to C = C *

C /= A is equivalent to C = C /

C %= A is equivalent to C = C % A

Try the following example to understand all the assignment operators available in C++.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

36

#include <iostream>

using namespace std;

 main()

 {

int a = 21;

int c ;

c = a;

 cout << "Line 1 - = Operator, Value of c = : " <<c<< endl ;

c += a;

cout << "Line 2 - += Operator, Value of c = : " <<c<< endl ;

c -= a;

cout << "Line 3 - -= Operator, Value of c = : " <<c<< endl ;

 c *= a;

 cout << "Line 4 - *= Operator, Value of c = : " <<c<< endl ;

 c /= a;

cout << "Line 5 - /= Operator, Value of c = : " <<c<< endl ;

 c = 200;

c %= a; cout << "Line 6 - %= Operator, Value of c = : " <<c<< endl ;

return 0;

 }

 When the above code is compiled and executed, it produces the following result:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

37

 Line 1 - = Operator, Value of c = : 21

Line 2 - += Operator, Value of c = : 42

Line 3 - -= Operator, Value of c = : 21

Line 4 - *= Operator, Value of c = : 441

Line 5 - /= Operator, Value of c = : 21

Line 6 - %= Operator, Value of c = : 11

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

38

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Following is the general from of a typical decision making structure found in most of the

programming languages:

C++ programming language provides following types of decision making statements.

DECISION-MAKING STATEMENTS

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

39

 Statement Description

if statement

 if...else statement

switch statement

nested if statements

An ‘if’ statement consists of a boolean expression followed by

one or more statements.

An ‘if’ statement can be followed by an optional ‘else’ statement,

which executes when the boolean expression is false.

A ‘switch’ statement allows a variable to be tested for equality

against a list of values.

You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or

‘else if’ statement(s).

If Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in C++ is:

if(boolean_expression)

 {

 // statement(s) will execute if the boolean expression is true

 }

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

40

If the boolean expression evaluates to true, then the block of code inside the if statement will be

executed. If boolean expression evaluates to false, then the first set of code after the end of the if

statement (after the closing curly brace) will be executed.

Flow Diagram

Example

 #include<iostream>

 using namespace std;

int main ()

 {

// local variable declaration:

int a = 10;

 // check the boolean condition

if(a < 20)

 {

 // if condition is true then print the following

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

41

 cout << "a is less than 20;" << endl;

 }

cout << "value of a is : " << a << endl;

 return 0;

 }

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

if…else Statement

An if statement can be followed by an optional else statement, which executes when the boolean

expression is false.

Syntax

The syntax of an if...else statement in C++ is:

 if(boolean_expression)

 {

 // statement(s) will execute if the boolean expression is true

 }

 else

 {

 // statement(s) will execute if the boolean expression is false

 }

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

42

 If the boolean expression evaluates to true, then the if block of code will be executed, otherwise

else block of code will be executed.

Flow Diagram

Example

include<iostream>

using namespace std;

int main ()

 {

// local variable declaration:

int a = 100;

// check the boolean condition

if(a < 20)

{

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

43

 // if condition is true then print the following

cout << "a is less than 20;" << endl;

 }

 else

{

// if condition is false then print the following

cout << "a is not less than 20;" << endl;

 }

cout << "value of a is : " << a << endl;

return 0;

 }

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

 if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very usefull to

test various conditions using single if...else if statement. When using if , else if , else statements

there are few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be tested.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

44

Syntax

The syntax of an if...else if...else statement in C++ is:

if(boolean_expression 1)

 {

// Executes when the boolean expression 1 is true

 }

 else if(boolean_expression 2)

 {

// Executes when the boolean expression 2 is true

}

else if(boolean_expression 3)

 {

// Executes when the boolean expression 3 is true

 }

else

{

 // executes when the none of the above condition is true.

}

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

45

Example

#include<iostream>

 using namespace std;

int main ()

 {

 // local variable declaration:

int a = 100;

// check the boolean condition

 if(a == 10)

 {

 // if condition is true then print the following

 cout << "Value of a is 10" << endl;

}

 else if(a == 20)

{

 // if else if condition is true

cout << "Value of a is 20" << endl;

}

else if(a == 30)

 {

// if else if condition is true

 cout << "Value of a is 30" << endl;

}

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

46

 else

{

 // if none of the conditions is true

cout << "Value of a is not matching" << endl;

 }

cout << "Exact value of a is : " << a << endl;

 return 0;

 }

 When the above code is compiled and executed, it produces the following result:

Value of a is not matching

 Exact value of a is : 100

Switch Statement

 A switch statement allows a variable to be tested for equality against a list of values. Each value

is called a case, and the variable being switched on is checked for each case.

 Syntax

The syntax for a switch statement in C++ is as follows:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

47

switch(expression)

{

 case constant-expression :

statement(s);

break; //optional

case constant-expression :

statement(s);

break; //optional

// you can have any number of case statements.

default : //Optional

statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be of a

class type in which the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the

value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and

it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case will

execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to the

next line following the switch statement.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

48

 Not every case needs to contain a break. If no break appears, the flow of control will fall

through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the

switch. The default case can be used for performing a task when none of the cases is true. No

break is needed in the default case.

 Flow Diagram

Example

#include<iostream>

using namespace std;

int main ()

 {

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

49

// local variable declaration:

char grade = 'D';

switch(grade)

 {

 case 'A' :

cout << "Excellent!" << endl;

break;

case 'B' :

case 'C' :

cout << "Well done" << endl;

break;

case 'D' :

cout << "You passed" << endl;

break;

case 'F' :

 cout << "Better try again" << endl;

break;

default :

 cout << "Invalid grade" << endl;

}

cout << "Your grade is " << grade << endl;

 return 0;

}

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

50

This would produce the following result:

You passed

Your grade is D

Nested if Statement

It is always legal to nest if-else statements, which means you can use one if or else if statement

inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

 if(boolean_expression 1)

 {

// Executes when the boolean expression 1 is true

if(boolean_expression 2)

{

 // Executes when the boolean expression 2 is true

 }

 }

 You can nest else if...else in the similar way as you have nested if statement.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

51

Example

#include<iostream>

using namespace std;

int main ()

 {

// local variable declaration:

int a = 100;

 int b = 200;

// check the boolean condition

if(a == 100)

 {

// if condition is true then check the following

if(b == 200)

 {

// if condition is true then print the following

 cout << "Value of a is 100 and b is 200" << endl;

}

}

 cout << "Exact value of a is : " << a << endl;

cout << "Exact value of b is : " << b << endl;

return 0;

}

 When the above code is compiled and executed, it produces the following result:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

52

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

53

There may be a situation, when you need to execute a block of code several number of times. In

general, statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general from of a loop statement in most of the programming languages:

C++ programming language provides the following type of loops to handle looping

requirements.

LOOP TYPES

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

54

Loop Type Description

while loop

for loop

do...while

nested loops

Repeats a statement or group of statements while a given condition is

true. It tests the condition before executing the loop body.

Execute a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

loop Like a ‘while’ statement, except that it tests the condition at the

end of the loop body.

You can use one or more loop inside any another ‘while’, ‘for’ or

‘do..while’ loop.

for Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to

execute a specific number of times.

Syntax

The syntax of a for loop in C++ is:

for (init; condition; increment)

 {

 statement(s);

 }

 Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and initialize any

loop control variables. You are not required to put a statement here, as long as a semicolon

appears.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

55

 2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the

body of the loop does not execute and flow of control jumps to the next statement just after the

for loop.

 3. After the body of the for loop executes, the flow of control jumps back up to the increment

statement. This statement allows you to update any loop control variables. This statement can be

left blank, as long as a semicolon appears after the condition.

 4. The condition is now evaluated again. If it is true, the loop executes and the process repeats

itself (body of loop, then increment step, and then again condition). After the condition becomes

false, the for loop terminates.

 Flow Diagram

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

56

Example

#include <iostream>

using namespace std;

int main ()

 {

// for loop execution

for(int a = 10; a < 20; a = a + 1)

{

 cout << "value of a: " << a << endl;

 }

return 0;

 }

When the above code is compiled and executed, it produces the following result:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

57

 value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

 value of a: 16

value of a: 17

value of a: 18

value of a: 19

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

58

A function is a group of statements that together perform a task. Every C++ program has at least

one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function

performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function. The C++ standard library provides

numerous built-in functions that your program can call. For example, function strcat() to

concatenate two strings, function memcpy() to copy one memory location to another location,

and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows:

return_type function_name(parameter list)

 {

 body of the function

 }

A C++ function definition consists of a function header and a function body. Here are all the

parts of a function:

 Return Type: A function may return a value. The return_type is the data type of the value the

function returns. Some functions perform the desired operations without returning a value. In this

case, the return_type is the keyword void.

FUNCTIONS

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

59

 Function Name: This is the actual name of the function. The function name and the parameter

list together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to

the parameter. This value is referred to as actual parameter or argument. The parameter list refers

to the type, order, and number of the parameters of a function. Parameters are optional; that is, a

function may contain no parameters.

 Function Body: The function body contains a collection of statements that define what the

function does.

Example:

 Following is the source code for a function called max(). This function takes two parameters

num1 and num2 and returns the maximum between the two:

// function returning the max between two numbers

int max(int num1, int num2)

 {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else result = num2;

 return result;

 }

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The

actual body of the function can be defined separately. A function declaration has the following

parts:

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

60

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration:

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration:

int max(int, int);

Function declaration is required when you define a function in one source file and you call that

function in another file. In such case, you should declare the function at the top of the file calling

the function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a

function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called

function performs defined task and when it’s return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

 To call a function, you simply need to pass the required parameters along with function name,

and if function returns a value, then you can store returned value. For example:

#include <iostream>

using namespace std;

// function declaration

int max(int num1, int num2);

int main ()

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

61

{

// local variable declaration:

int a = 100;

int b = 200;

int ret;

// calling a function to get max value.

ret = max(a, b);

cout << "Max value is : " << ret << endl;

return 0;

}

 // function returning the max between two numbers

 int max(int num1, int num2)

{

// local variable declaration

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

I kept max() function along with main() function and compiled the source code.

While running final executable, it would produce the following result:

Max value is : 200

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

62

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created upon

entry into the function and destroyed upon exit. While calling a function, there are two ways that

arguments can be passed to a function:

 Call Type Description

Call by value

Call by reference

This method copies the actual value of an argument into the formal

parameter of the function. In this case, changes made to the parameter

inside the function have no effect on the argument.

This method copies the reference of an argument into the formal

parameter. Inside the function, the reference is used to access the

actual argument usedin the call. This means that changes made to the

parameter affect the argument.

Call by Value

The call by value method of passing arguments to a function copies the actual value of an

argument into the formal parameter of the function. In this case, changes made to the parameter

inside the function have no effect on the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function. Consider the function swap()

definition as follows.

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

63

// function definition to swap the values.

void swap(int x, int y)

 {

 int temp;

 temp = x;

 /* save the value of x */

 x = y;

 /* put y into x */

 y = temp;

 /* put x into y */

 return;

 }

Now, let us call the function swap() by passing actual values as in the following example

#include <iostream>

using namespace std;

 // function declaration

void swap(int x, int y);

int main ()

 {

 // local variable declaration:

 int a = 100;

 int b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 // calling a function to swap the values.

 swap(a, b);

 cout << "After swap, value of a :" << a << endl;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

64

 cout << "After swap, value of b :" << b << endl;

 return 0;

 }

When the above code is put together in a file, compiled and executed, it produces the following

result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had been changed inside the

function.

Call by Reference

The call by reference method of passing arguments to a function copies the reference of an

argument into the formal parameter. Inside the function, the reference is used to access the actual

argument used in the call. This means that changes made to the parameter affect the passed

argument.

To pass the value by reference, argument reference is passed to the functions just like any other

value. So accordingly you need to declare the function parameters as reference types as in the

following function swap(), which exchanges the values of the two integer variables pointed to by

its arguments.

// function definition to swap the values.

void swap(int &x, int &y)

 {

 Int temp;

 temp = x;

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

65

 /* save the value at address x */

 x = y;

 /* put y into x */

 y = temp;

 /* put x into y */

 return;

 }

For now, let us call the function swap() by passing values by reference as in the following

example:

#include<iostream>

 using namespace std;

 // function declaration

 void swap(int &x, int &y);

int main ()

 {

 // local variable declaration:

 int a = 100;

 int b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 /* calling a function to swap the values using variable reference.*/

 swap(a, b);

 cout << "After swap, value of a :" << a << endl;

 cout << "After swap, value of b :" << b << endl;

 return 0;

 }

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

66

When the above code is put together in a file, compiled and executed, it produces the following

result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function and above mentioned example while

calling max() function used the same method.

Default Values for Parameters

 When you define a function, you can specify a default value for each of the last parameters. This

value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the

function definition. If a value for that parameter is not passed when the function is called, the

default given value is used, but if a value is specified, this default value is ignored and the passed

value is used instead. Consider the following example:

#include <iostream>

using namespace std;

 int sum(int a, int b=20)

 {

 int result;

 result = a + b;

 return (result);

 }

int main ()

 {

ISYS 101 Dr. Nahla Al_Zerkany 2019-2020

67

 // local variable declaration:

 int a = 100;

 int b = 200;

 int result;

 // calling a function to add the values.

 result = sum(a, b);

 cout << "Total value is :" << result << endl;

 // calling a function again as follows.

 result = sum(a);

 cout << "Total value is :" << result << endl;

 return 0;

 }

When the above code is compiled and executed, it produces the following result:

Total value is :300

 Total value is :120

